In situ preparation, electrical and surface analytical characterization of pentacene thin film transistors
نویسندگان
چکیده
The fabrication of organic thin film transistors with highly reproducible characteristics presents a very challenging task. We have prepared and analyzed model pentacene thin film transistors under ultra-high vacuum conditions, employing surface analytical tools and methods. Intentionally contaminating the gold contacts and SiO2 channel area with carbon through repeated adsorption, dissociation, and desorption of pentacene proved to be very advantageous in the creation of devices with stable and reproducible parameters. We mainly focused on the device properties, such as mobility and threshold voltage, as a function of film morphology and preparation temperature. At 300 K, pentacene displays Stranski-Krastanov growth, whereas at 200 K fine-grained, layer-like film growth takes place, which predominantly influences the threshold voltage. Temperature dependent mobility measurements demonstrate good agreement with the established multiple trapping and release model, which in turn indicates a predominant concentration of shallow traps in the crystal grains and at the oxide-semiconductor interface. Mobility and threshold voltage measurements as a function of coverage reveal that up to four full monolayers contribute to the overall charge transport. A significant influence on the effective mobility also stems from the access resistance at the gold contact-semiconductor interface, which is again strongly influenced by the temperature dependent, characteristic film growth mode.
منابع مشابه
Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification
In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p++-silicon/silicon dioxide bottom-gate, gold bottom-contact transistor sample...
متن کاملElectronic and Structural Properties of Pentacene at Organic/inorganic Interfaces
Organic/inorganic interfaces play a crucial role in flexible electronic devices such as organic field effect transistors (OFETs), organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs). Charge injection and transport through the interface is not only important in understanding devices, but also a primary challenge in developing and optimizing devices. More flexibility in fabrica...
متن کاملAl Doped ZnO Thin Films; Preparation and Characterization
ZnO is a promising material suitable for variety of novel electronic applications including sensors, transistors, and solar cells. Intrinsic ZnO film has inferiority in terms of electronic properties, which has prompted researches and investigations on doped ZnO films in order to improve its electronic properties. In this work, aluminum (Al) doped ZnO (AZO) with various concentrations and undop...
متن کاملElectrical in-situ characterisation of interface stabilised organic thin-film transistors
We report on the electrical in-situ characterisation of organic thin film transistors under high vacuum conditions. Model devices in a bottom-gate/bottom-contact (coplanar) configuration are electrically characterised in-situ, monolayer by monolayer (ML), while the organic semiconductor (OSC) is evaporated by organic molecular beam epitaxy (OMBE). Thermal SiO2 with an optional polymer interface...
متن کاملElectrical Properties of Triisopropylsilyl Pentacene Organic Thin-Film Transistors by Ink-Jet Method
We fabricated triisopropylsilyl (TIPS) pentacene organic thin-film transistors (OTFTs) by inkjet printing method and investigated their electrical properties. The film morphology of TIPS pentacene layer and the field-effect mobility of OTFTs were greatly affected by choice of the solvent which TIPS pentacene was dissolved in. Especially the boiling point of a solvent was a critical factor that ...
متن کامل